
BUILDING BLOCKS FOR RELIABLE COMPLEX

NONLINEAR NUMERICAL SIMULATIONS*

H. C. Yee

NASA Ames Research Center, Moffett Field, CA 94035, USA.

yee@nas.nasa.oov

Abstract This chapter describes some of the building blocks to ensure a higher level of

confidence in the predictability and reliability (PAR) of numerical simulation of

multiscale complex nonlinear problems. The focus is on relating PAR of nu-

merical simulations with complex nonlinear phenomena of numerics. To isolate

sources of numerical uncertainties, the possible discrepancy between the chosen

partial differential equation (PDE) model and the real physics and/or experimen-

tal data is set aside. The discussion is restricted to how well numerical schemes

can mimic the solution behavior of the underlying PDE model for finite time

steps and grid spacings. The situation is complicated by the fact that the avail-

able theory for the understanding of nonlinear behavior of numerics is not at

a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The

discussion is based on the knowledge gained for nonlinear model problems with

known analytical solutions to identify and explain the possible sources and reme-

dies of numerical uncertainties in practical computations. Examples relevant to

turbulent flow computations are included.
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liability of Numerical Simulations, Under-Resolved Grids, Spurious Numerical

Solutions, Nonlinear Dynamics, Spurious Bifurcations.

1. Introduction

The last two decades have been an era when computation is ahead of analysis

and when very large scale practical computations are increasingly used in poorly
understood multiscale complex nonlinear physical problems and non-traditional

fields. Ensuring a higher level of confidence in the predictability and reliability

(PAR) of these numerical simulations could play a major role in furthering

the design, understanding, affordability and safety of our next generation air

*A chapter for Turbulent Flow Computation, (Eds. D. Drikakis & B. Geurts), Kluwer Academic Publisher,
2001.
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and space transportation systems, and systems for planetary and atmospheric
sciences, and astrobiology research. In particular, it plays a major role in the

success of the US Accelerated Strategic Computing Initiative (ASCI) and its

five Academic Strategic Alliance Program (ASAP) centers. Stochasticity stands

alongside nonlinearity and the presence of multiscale physical processes as a

predominant feature of the scope of this research. The need to guarantee PAR

becomes acute when computations offer the ONLY way of generating this type
of data limited simulations, the experimental means being unfeasible for any of

a number of possible reasons. Examples of this type of data limited problem
are:

• Stability behavior of re-entry vehicles at high speeds and flow conditions

beyond the operating ranges of existing wind tunnels

Flow field in thermo-chemical nonequilibrium around space vehicles

traveling at hypersonic velocities through the atmosphere (lack sufficient

experimental or analytic validation)

Aerodynamics of aircraft in time-dependent maneuvers at high angles
of attack (free of interference from support structures, wind-tunnel walls

etc., and able to treat flight at extreme and unsafe operating conditions)

Stability issues of unsteady separated flows in the absence of all the un-
wanted disturbances typical of wind-tunnel experiments (e.g., geometri-

cally imperfect free-stream turbulence)

This chapter describes some of the building blocks to ensure a higher level of
confidence in the PAR of numerical simulation of the aforementioned multi scale

complex nonlinear problems, especially the related turbulence flow computa-
tions. To isolate the source of numerical uncertainties, the possible discrepancy

between the chosen model and the real physics and/or experimental data is set

aside for the moment. We concentrate only on how well numerical schemes can

mimic the solution behavior of the underlying partial different equations (PDEs)

for finite time steps and grid spacings. Even with this restriction, the study of

PAR encompasses elements and factors far beyond what is discussed here. It is

important to have a very clear distinction of numerical uncertainties from each
source. These include but are not limited to (a) stability and well-posedness

of the governing PDEs, (b) type, order of accuracy, nonlinear stability, and

convergence of finite discretizations, (c) limits and barriers of existing finite
discretizations for highly nonlinear stiff problems with source terms and forc-

ing, and/or for long time wave propagation phenomena, (d) numerical boundary
condition (BC) treatments, (e) finite representation of infinite domains, (f) solu-

tion strategies in solving the nonlinear discretized equations, (g) procedures for
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obtaining the steady-state numerical solutions, (h) grid quality and grid adapta-

tions, (i) multigrids, and (j) domain decomposition (zonal or multicomponent

approach) in solving large problems. At present, some of the numerical uncer-

tainties can be explained and minimized by traditional numerical analysis and

standard CFD practices. However, such practices, usually based on linearized

analysis, might not be sufficient for strongly nonlinear and/or stiff problems.

We need a good understanding of the nonlinear behavior of numerical schemes

being used as an integral part of code verification, validation and certification.

A major stumbling block in genuinely nonlinear studies is that unlike the
linear model equations used for conventional stability and accuracy consider-

ations in time-dependent PDEs, there is no equivalent unique nonlinear model

equation for nonlinear hyperbolic and parabolic PDEs for fluid dynamics. On

one hand, a numerical method behaving in a certain way for a particular nonlin-

ear differential equation (DE) (PDE or ordinary differential equation (ODE))

might exhibit a different behavior for a different nonlinear DE even though

the DEs are of the same type. On the other hand, even for simple nonlinear

model DEs with known solutions, the discretized counterparts can be extremely

complex, depending on the numerical methods. Except in special cases, there

is no general theory at the present time to characterize the various nonlinear
behaviors of the underlying discretized counterparts. Herein, the discussion

is based on the knowledge gained for nonlinear model problems with known

analytical solutions to identify and explain the possible sources and remedies
of numerical uncertainties in practical computations.

The term "diseretized counterparts" is used to mean the finite difference

equations resulting from finite discretizations of the underlying DEs. Here "dy-

namics" is used loosely to mean the dynamical behavior of nonlinear dynamical

systems (continuum or discrete) and "numerics" is used loosely to mean the
numerical methods and procedures in solving dynamical systems. We empha-

size here that in the study of the dynamics of numerics, unless otherwise stated,

we always assume the continuum (governing equations) is nonlinear.

Outline: Section 2 discusses the sources of nonlinearities and the knowledge

gained from studying the dynamics of numerics for nonlinear model problems.
Sections 3-5 discuss some of the relevant issues and building blocks for a more

reliable (and predictability) numerical simulation in more details. Section 6

shows examples of spurious numerics relevant to turbulent flow computations.



2. Sources of Nonlinearities and Knowledge Gained from
Nonlinear Model Problems

Two of the building blocks for the PAR of numerical simulations are to

identify all the sources of nonlinearities and to isolate the elements and issues
of numerical uncertainties due to these nonlinearities.

Sources of Nonlinearities: The sources of nonlinearities that are well known

in computational fluid dynamics (CFD) are due to the physics. Examples of

nonlinearities due to the physics are convection, diffusion, forcing, turbulence

source terms, reacting flows, combustion related problems, or any combination
of the above. The less familiar sources of nonlinearities are due to the numerics.

There are generally three major sources:

• Nonlinearities due to time discretizations - the discretized counterpart

is nonlinear in the time step. Examples of this type are Runge-Kutta

methods. If fixed time steps are used, spurious steady-state or spurious

asymptotic numerical solutions can occur, depending on the the initial
condition (IC). Linear multistep methods (LMMs) (Butcher 1987) are

linear in the time step, and they do not exhibit spurious steady states. See

Yee & S weby (1991-1997) and references cited therein for the dynamics
of numerics of standard time discretizations.

• Nonlinearities due to spatial discretizations - in this case, the discretized
counterpart can be nonlinear in the grid spacing and/or the scheme. Ex-

amples of nonlinear schemes are the total variation diminishing (TVD),

essentially nonoscillatory (ENO) and weighted ENO (WENO) schemes.

The resulting discretized counterparts are nonlinear (in the dependent

variables) even though the governing equation is linear. See Yee (1989)
and references cited therein for the forms of these schemes.

• Nonlinearities due to complex geometries, boundary interfaces, grid gen-

eration, grid refinements and grid adaptations (Yee & Sweby 1995) - each
of these procedures can introduce nonlinearities even though the govern-

ing equation is linear.

Continuous and Discrete Dynamical Systems: Before analyzing the dynam-

ics of numerics, it is necessary to analyze (or understand) as much as possible

the dynamical behavior of the governing equations and/or the physical problems
using theories of DEs, dynamical systems of DEs, and also physical guidelines.

For stability and well-posedness considerations, whenever it is possible, it is

also necessary to condition (not pre-condition) the governing PDEs before the

application of the appropriate scheme (Yee & Sj6green 2001a,b). The dis-

cretized counterparts are dynamical systems on their own. They have their own

dynamics, and they are different from one numerical method to another in space
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and time and are different from the underlying governing PDE (Yee & Sweby

1993). The procedures of solving the nonlinear algebraic systems resulting from

using implicit methods can interfere with or superpose unwanted behavior on
the underlying scheme. Also, the same scheme can exhibit different spurious

behavior when used for time-accurate vs. time marching to the steady states.

For a combination of initial condition and time step, a super-stable scheme can
stabilize unstable physical (analytic) steady states (Yee & Sweby 1993-1996).

Super-stable scheme here refers to the region of numerical stability enclosing

the physical instability of the true solution of the governing equation. Yee et al.

and Yee & Sweby (1991-1997) divide their studies into two categories, steady

state and time accurate computations. Within each category they further di-

vide the governing PDEs into homogeneous and nonhomogeneous (i.e., with or

without source terms), and rapidly/slowly developing and long time integration

problems.

Knowledge Gained from Nonlinear Model Problems: With the aid of ele-

mentary examples, Yee et al., Yee & Sweby (1991-1997), Sweby & Yee (1994-
1995) and Griffiths et al. (1992a,b) discuss the fundamentals of spurious be-

havior of commonly used time and spatial discretizations in CFD. Details of

these examples can be found in their earlier papers. These examples consist
of nonlinear model ODEs and PDEs with known analytical solutions (the most

straight forward way of being sure what is "really" happening with the numer-

ics). They illustrate the danger of employing fixed (constant) time steps and

grid spacings. They were selected to illustrate the following different nonlinear
behavior of numerical methods:

Occurrence of stable and unstable spurious asymptotes above the lin-

earized stability limit of the scheme (for constant time steps)

Occurrence of stable and unstable spurious steady states below the lin-
earized stability limit of the scheme (for constant time steps)

Stabilization of unstable steady states by implicit and semi-implicit
methods

• Interplay of initial data and time steps on the occurrence of spurious

asymptotes

• Interference with the dynamics of the underlying implicit scheme by

procedures in solving the nonlinear algebraic equations (resulting from

implicit discretizations of the continuum equations)

• Dynamics of the linearized implicit Euler scheme solving the time-dependent

equations to obtain steady states vs. Newton's method solving the steady

equation



Spuriousdynamicsindependentlyintroducedby spatialandtimedis-
cretizations

Convergenceproblemsandspuriousbehaviorof high-resolutionshock-
capturingmethods

Numericallyinduced& suppressed(spurious)chaos,andnumerically
inducedchaotictransients

• Spuriousdynamicsgeneratedbygridadaptations

Here"spuriousnumericalsolutions(andasymptotes)"isusedtomeannumer-
ical solutions(asymptotes)thataresolutions(asymptotes)of thediscretized
counterpartsbutarenotsolutions(asymptotes)oftheunderlyingDEs.Asymp-
toticsolutionshereincludesteady-statesolutions,periodicsolutions,limit cy-
cles,chaosandstrangeattractors.SeeThompson& Stewart(1986)andHop-
pensteadt(1993)for thedefinitionofchaosandstrangeattractors.

3. Minimization of Spurious Steady State via Bifurcation

Theory

The use of time-marching approaches to obtain steady-state numerical solu-

tions has been considered the method of choice in computational physics for

three decades since the pioneering work of Moretti & Abbett (1966). Moretti

and Abbett used this approach to solve the inviscid supersonic flow over a blunt

body without resorting to solving the steady form of PDEs of the mixed type.

Much success was achieved in computing a variety of weakly and moderately

nonlinear fluid flow problems. For highly complex nonlinear problems, the situ-

ation is more complicated. The following isolates some of the key elements and
issues of numerical uncertainties in time-marching to the steady state. Studies

in Yee et al. (1991-1997) indicate that each of the following can affect not only

the convergence rate but also spurious numerics other than standard stability

and accuracy linearized numerical analysis problems.

• Solving an initial boundary value problem (IBVP) with unknown initial
data

• Reliability of residual test

• Methods used to accelerate the convergence process

• Precondition (not condition) the governing PDE (might introduce addi-

tional spurious solutions beyond the solution of the underlying PDE)

• Precondition the discretized counterparts (might introduce additional

spurious solutions beyond the underlying discretized system)
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• Methods in solving the nonlinear algebraic equations from implicit meth-
ods

• Mismatch in implicit schemes

• Nonlinear schemes

• Schemes that are linear vs. nonlinear in time step

• Adaptive time step based on local error control

It is a standard practice in time-marching to the steady-state numerical so-

lutions to use "local time step" (varied from grid point to grid point using the

same CFL) for nonuniform grids. However, except in finite element methods, an

adaptive time step based on local error control is rarely used. An adaptive time

step is built in for standard ODE solver computer packages. It enjoyed much

success in controlling accuracy and stability for transient (time-accurate) com-

putations. The issue is to what extent this adaptive local error control confers

global properties in long time integration of time-dependent PDEs and whether
one can construct a similar error control that has guaranteed and rapid con-

vergence to the correct steady-state numerical solutions in the time-marching

approaches for time-dependent PDEs.

One can see that the construction of adaptive time integrators for time-

marching to the steady states demands new concepts and guidelines and is

distinctively different than for the time-accurate case. Straightforward applica-

tion of adaptive time integrators for time-accurate computations might be inap-

propriate and/or extremely inefficient for time-marching to the steady state. For

example, an adaptive time step based on local error control for accuracy con-
siderations is irrelevant before a steady state has been reached. Moreover, this

type of local error control might hinder the speed of the convergence process

with no guarantee of leading to the correct steady state.

The twin requirements of guaranteed and rapid convergence to the correct

steady-state numerical solution are most often conflicting, and require a full

understanding of the global nonlinear behavior of the numerical scheme as a
function of the discretized parameters, grid adaptation parameters, initial data

and boundary conditions. We believe tools from bifurcation theory can help to

minimize spurious steady-state numerical solutions.

In many fluid problems the solution behavior is well known for certain values

of the physical parameters but unknown for other values. For these other values

of the parameters, the problem might become very stiff and/or strongly nonlin-
ear, making the available numerical schemes (or the scheme in use) intractable.

In this situation, continuation methods in bifurcation theory can become very

useful. If possible, one should start with the physical parameter of a known or
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reliable steady state (e.g., flow behavior is usually known for low angles of at-

tack but not for high angles of attack). One can then use a continuation method

such as the improved pseudo arclength continuation method of Keller (1977)

(or the recent developments in this area) to solve for the bifurcation curve as a

function of the physical parameter. See e.g., Doedel (2000), Shroff & Keller

(1993) and Davidson (1997). The equations used are the discretized counter-

part of the steady PDEs or the time-dependent PDEs. See Stephen & Shubin

(1981) and Shubin et al. (1981) for earlier related work. If time-marching

approaches are used, a reliable steady-state numerical solution (as a starting
value on the correct branch of the bifurcation curve for a particular value of the

physical parameter) is assumed. This starting steady-state numerical solution

is assumed to have the proper time step and initial data combination and to

have a grid spacing fine enough to resolve the flow feature. The continuation

method will produce a continuous spectrum of the numerical solutions as the

underlying physical parameter is varied until it arrives at a critical value Pc

such that it either experiences a bifurcation point or fails to converge. Since
we started on the correct branch of the bifurcation curve, the solution obtained

before that Pc should be more reliable than if one starts with the physical pa-

rameter in question with unknown initial data and tries to stretch the limitation

of the scheme. Note that by starting a reliable solution on the correct branch of

the bifurcation curve, the dependence of the numerical solution on the initial
data associated with time-marching methods can be avoided before a spurious
bifurcation occurs.

Finally, when one is not sure of the numerical solution, the continuation

method can be used to double check it. This approach can even reveal the true

limitations of the existing scheme. In other words, the approach can reveal the

critical physical parameter for which the numerical method breaks down. On
the other hand, if one wants to find out the largest possible time step and/or

grid spacing that one can use for a particular problem and physical parameter,
one can also use continuation methods to trace out the bifurcation curve as a

function of the time step and/or grid spacing. In this case, one can start with a

small time step and/or grid spacing with the correct steady state and observe the

critical discretized parameter as it undergoes instability or spurious bifurcation.

Of course, this method for minimizing spurious steady states still can suffer

from spurious behavior due to an under-resolved grid because of limited com-

puter resources for complex practical problems. Practical guidelines to avoid

under-resolved grids are yet another important building block toward reliable

numerical simulations. The efficient treatment of solving the extremely large

set of eigenvalue problems to study the type and stability of bifurcation points

is yet another challenge. See, e.g., Fortin et al. (1996), Davidson (1997) and

Shroff & Keller (1993) for some discussions. Consequently, further develop-
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ment in numerical bifurcation analysis and new concepts in adaptive methods

for time-marching to steady state hold a key to the minimization of spurious

numerics.

4. Source Term Treatments in Reacting Flows

In the modeling of problems containing finite-rate chemistry or combustion,

often, a wide range of space and time scales is present due to the reacting terms,
over and above the different scales associated with turbulent flows, leading

to additional numerical difficulties. This stems mainly from the fact that the

majority of widely used numerical algorithms in reacting flows were originally

designed to solve non-reacting fluid flow problems. Fundamental studies on

the behavior of these schemes for reacting model problems by the author and

collaborators were reported in Yee & Sweby (1997) and references cited therein.

In a majority of these studies, theory from dynamical systems was used to gain

a better understanding of the nonlinear effects on the performance of these

schemes. The main findings are:

It was shown in LeVeque and Yee (1990) that, for stiff reactions con-

taining shock waves, it is possible to obtain stable solutions that look

reasonable and yet are completely wrong, because the discontinuities are

in the wrong locations. Stiff reaction waves move at nonphysical wave

speeds, often at the rate of one grid cell per time step, regardless of their

proper speed. There exist several methods that can overcome this diffi-

culty for a single reaction term. For more than a single reacting term in

fully coupled nonlinear systems, more research is needed. One impracti-
cal way of minimizing the wrong speed of propagation of discontinuities

is to demand orders of magnitude grid size reduction compared with what

appears to be a reasonable grid spacing in practice.

It was shown in Lafon and Yee (1991, 1992) that the numerical phe-

nomenon of incorrect propagation speeds of discontinuities may be linked

to the existence of some stable spurious steady-state numerical solutions.

• It was also shown in Lafon and Yee (1991, 1992) that various ways of

discretizing the reaction term can affect the stability of and convergence

to the spurious numerical steady states and/or the exact steady states.
Pointwise evaluation of the source terms appears to be the least stable.

It was shown in Yee et al. (1991) and Griffiths et al. (1992a,b) that

spurious discrete traveling waves can exist, depending on the method of

discretizing the source term. When physical diffusion is added, it is not

known what type of numerical difficulties will surface.
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Fromthe abovefindingswecansafelyconcludethatunderstandingthe
nonlinearbehaviorof numericalschemesfor reactingflowsandtheeffects
of finite-ratechemistryonturbulenceis in its infancy.However,webelieve
thatknowledgegainedfromfundamentalstudiesishelpfultoimprovesomeof
thenumericaldifficultiesthatwereencounteredin thepast.

5. Adaptive Numerical Methods

Another important building block for PAR is adaptive numerical methods.

This includes adaptive temporal and spatial schemes, grid adaptation as an

integral part of the numerical solution process, and, most of all, adaptive nu-

merical dissipation controls. Using tools from dynamical systems, Yee et al.

(1991-1997), Yee & Sweby (1993-1997), Griffiths et al. (1992a,b) and Lafon &

Yee (1991, 1992) showed that adaptive temporal and adaptive spatial schemes

are important in minimizing numerically induced chaos, numerically induced

chaotic transients and the false prediction of flow instability by direct numerical

simulation (DNS). Their studies further indicate the need in the development

of practical adaptive temporal schemes based on error controls to minimize
spurious numerics due to the full diseretizations. In addition, the development

of adaptive temporal and spatial schemes based on error controls to minimize
numerical artifacts due to the full discretizations is also needed. This is due to

the fact that adaptive temporal or adaptive spatial schemes alone will not be

able to provide an accurate and reliable process to minimize numerical artifacts

for time-accurate computations. Guided by the theory of nonlinear dynamics,

Yee et al. (1997) and Yee & Sweby (1997) presented practical examples which

illustrated the danger of using nonadaptive temporal and spatial schemes for

studying flow instability.

On the subject of adaptive numerical dissipation controls, it is well known
that reliable, accurate and efficient direct numerical simulation (DNS) of tur-

bulence in the presence of shock waves represents a significant challenge for
numerical methods. Standard TVD, ENO, WENO and discontinuous Galerkin

types of shock-capturing methods for the Euler equations are now routinely used

in high speed blast wave simulations with virtually non-oscillatory, crisp reso-
lution of discontinuities (see reference section). For the unaveraged unsteady

compressible Navier-Stokes equations, it was observed that these schemes are
still too dissipative for turbulence and transition predictions. On the other hand,

hybrid schemes, where spectral and/or higher-order compact (Padr) schemes
are switched to higher-order ENO schemes when shock waves are detected,

have their deficiencies. One shortcoming of this type of hybridization is that

the numerical solution might experience a non-smooth transition at the switch

to a different type of scheme. For 2-D and 3-D complex shock wave and shear
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surface interactions, the switch mechanism can become non-trivial and frequent

activation of shock-capturing schemes is possible.

The recent work of Yee et al. (1999, 2000), Sj6green & Yee (2000, 2001),

and Yee & Sj6green (2001a,b) indicates that appropriate adaptive numerical

dissipation control is essential to control nonlinear instability in general, and

for long time integration, in particular. An integrated design approach on the

construction of adaptive numerical dissipation controls can be found in Yee &

Sj 6green (2001 a,b).

o Spurious Numerics Relevant to Turbulent Flow

Computations

This section illustrates four numerical examples that exhibit spurious nu-

merics relevant to turbulent flow computations. The first example discusses

spurious vortices related to under-resolved grids and/or lack of appropriate nu-

merical dissipation/filter controls. The second example discusses spurious be-
havior of super-stable implicit time integrators. The last two examples discuss

spurious behavior near the onset of turbulence and/or the onset of instability
of the steady state solution. If care is not taken, spurious bifurcation of the

discretized counterpart and/or a numerically induced chaotic transient can be

mistaken for the onset of physical turbulence of the governing equation. These

examples can serve to illustrate the connection between the spurious numerical

phenomena observed in simple nonlinear models and CFD computations.

6.1 Spurious Vortices in Under-Resolved Incompressible

Thin Shear Layer Flow Simulations

Brown & Minion (1995) performed a thorough study of a second-order

Godunov-projection method and a fourth-order central difference method for
the 2-D incompressible Navier-Stokes equations, varying the resolution of the

computational mesh with the rest of the physical and discretization parameters
fixed. This is a good example of isolating the cause of spurious behavior. The

physical problem is a doubly periodic double shear layer. The shear layers are

perturbed slightly at the initial time, which causes the shear layer to roll up
in time into large vortical structures. For a chosen shear layer width that is

considered to be thin and a fixed perturbation size, they compared the solution

for four different grid sizes (64 x 64, 128 x 128, 256 x 256, 512 x 512)

with a reference solution using a grid size of 1024 x 1024. For the 256 x 256

grid, a spurious vortex was formed midway between the periodically repeating
main vortex on each shear layer. The 128 x 128 solution showed three spu-

rious vortices along the shear layer. The spurious vortex disappeared with a

512 x 512 mesh. They also disabled the flux limiters (a strictly upwind Fromm's
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method),andfoundthebehaviortobesimilar.A subsequentstudy(Minion
& Brown1997)usingfivedifferentformulationsandsixdifferentcommonly
usedschemesinCFDfoundsimilarbehavior.Theyconcludedthatthespurious
vortexis theartifactof anunder-resolvedgridandthebehavioriscausedbya
nonlineareffect.Linkingthisbehaviorwithnonlineardynamics,weinterpret
theirobservationasfollows.Fortheparticulargridsizeandtimestepcom-
bination,stablespuriousequilibriumpointswereintroducedby thenumerics
intoaportionof theflow fieldwhilethemajorportionof theflow fieldwas
predictedcorrectly.Inotherwords,thespuriousvorticesarethesolutionofthe
discretizedcounterpartfor thatparticularrangeof gridsizeandtimestep.The
numberof stablespuriousvorticesis afunctionof thegridsize.Asthegrid
spacingdecreases,thespuriousequilibriagraduallybecomeunstableandthe
numericalsolutionmimicsthetruesolution.

Insteadofmerelyincreasingthegridsize,therearesituationswhereunder-
resolvedgridscanbe overcomeby propercontrolof numericaldissipa-
tion/filters.It wasshownin Fischer& Mullenthathigh-orderspectralele-
mentmethods(Maday& Patera1989),coupledwith filter-baseddissipation,
canremovewhatisbelievedtobeanunderresolution-inducedspuriousvortex
numericalsolution.SeeFischer& MullenorYee& Sj6green(2001a,b)for a
discussion.Fischer& MullenorYee& Sj6green(2001a,b)illustratetheadded
benefitof adaptivenumericaldissipation/filtercontrolsfor highorderorhigh
resolutionshock-capturingschemes.

6.2 Stabilizing Unstable Steady States with Implicit Time

Integrators (Poliashenko & Yee 1995, unpublished)

This is a joint work with Maxim Poliashenko in 1995. This unpublished

work was presented at the 10th International Conference in Finite Element
Methods, January 5-8, 1998, Tucson, Arizona, and also has been presented at

various invited lectures during the last four years. We consider a 2-D lid driven

cavity (LDC) problem. The PDE governing equations are the ideal viscous

incompressible Navier-Stokes equations of the form

at -+- (uT_7)U = --_7p-+- _ee AU,
(6.1)

div u = 0,

with boundary conditions in the domain (x, y)

u(y = a) -- 1, (6.2)

u(y = 0) = u(x = 0) = u(x = 1) = 0. (6.3)

Here u is a 2-D velocity vector, p is pressure and Re is the Reynolds number, a

dimensionless parameter of the problem that describes the relationship between
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kinematic and viscous forces in the fluid. Here a is the cavity aspect ratio. The

velocity vector u, pressure p and the time t are normalized with Re being

proportional to the velocity of the lid and inversely proportional to the viscosity
of the fluid.

Several numerical time integrators indicated that while the steady state is

unique and stable for small Reynolds numbers, the flow becomes time-periodic

as Re is increased to a few thousand. Poliashenko and Aidun (1995) applied

their direct method for computations of co-dimension one bifurcations to show

that the steady state of the LDC problem indeed loses its stability via Hopf

bifurcation (Thompson & Stewart 1986) as the Reynolds number increases,

giving rise to a time-periodic solution. This bifurcation can be subcritical or

supercritical depending on the aspect ratio a. With a given spatial resolution,

they found that the Hopf bifurcation point is supercritical for a = 0.8 at Re =
5220, and for a = 1.0 with Re = 7760, and subcritical for a = 1.5 at Re ---

7220, and for a = 2.0 with Re = 5120.

For the current numerical experiment, a 47 × 47 mildly clustered finite el-

ement mesh is used to spatially discretize the incompressible Navier-Stokes

equations. The flow solver is the finite element code FIDAP. Nine-node quadri-
lateral elements with biquadratic interpolation functions for velocity compo-

nents are used. The bilinear pressure interpolation functions are projected onto

the four Gauss points inside each element. In order to reduce the number of

nodal unknowns, a penalty approach to remove the pressure is used. The ele-
ments are 5 times thinner at the side walls and the bottom and 7 times thinner at

the moving lid boundary than at the cavity center. After the spatial discretiza-

tion, and the use of the weighted residual Galerkin method and the penalty

formulation for the pressure, we obtain

MdV
dt + K(U)U-- F. (6.4)

Here U is the global vector of system unknowns of size 2 • N where N is the
total number of non-boundary nodes. M is a block diagonal mass matrix. The

nonlinear matrix K represents contributions from the convective and diffusive

terms. F is a generalized force vector which includes contribution from body
forces.

The dynamics of two implicit predictor-corrector time integrators are studied.

The first is a first-order implicit Euler

U n+l - Up

M h + K(un+I)un+I -- F n+l, (6.5)

with the explicit Euler scheme as predictor

U p -- U n

M ÷ K(Un)U '_ -- F n. (6.6)
h
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The second is the Trapezoidal rule

M
un+l _ U p

hn
+ _[K(Un+11 )un+l q_K(UP)Up ] = _[Fn+l + Fp], (6.7)

with the Adams formula as predictor

t_n-1

an LTn_ 1] _ (6.8)

where h is a constant time step, hn is a variable time step and U'_ is an accel-

eration vector, approximated by

Vn __ 2____ (un _ urt-1)_ Vn-1. (6.9)

The local time truncation error AU n+l is computed as follows:

_xun+l U n+l _ (un+l) p= +
hn-1 )3(1+

(6.10)

After the norm I[AU'_+ll I is evaluated, the next time step is computed according
to the formula

)1/3 (6.11)

where e is a truncation error tolerance. We also set an upper limit, hmax, that

restricts growth of the time step.

We first study the dynamics of these time integrators using a fixed time
step (hk = constant). Standard Newton-Raphson and quasi-Newton iterative

methods are used to solve the nonlinear algebraic equations for this system of

ODEs with the predicted solution as an initial guess. With a fixed time step of

h = 0.001, both time integrators produce a periodic solution. However, as the

time step is increased up to h = 0.01, the first time integrator is attracted to the

steady state solution. This phenomenon of spurious stabilization of an unstable

steady state is very typical for implicit LMM schemes. This spurious steady
state remains stable as h increases further.

The dynamics of the second integrator is different. The solution remains

time periodic up to h = 0.75. For h between 0.75 and 0.8, the solution appears

quasiperiodic, indicating the occurrence of the secondary Hopf bifurcation.

With h increased to 1.0, the quasiperiodic oscillations become increasingly dis-

turbed until the solution appears very irregular for h > 1.0, which is indicative

of numerically induced chaos. With further increases in h, more complex bi-

furcations occur with the computed solution becoming regular again at h = 1.3
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2-D Lid Driven Cavity (LDC) (Joint workwithM.Poliashenko)
(Different Time Integrators Exhibit Distinct Spurious Bifurcations)

BCs: v(y=a) = 1
Rest of BCs are zero

Grid: 47 X 47

Re = 5500

Summary:

Numerical Methods: (FiniteElementCode- FIDAP)

s__: WeightedresidualGalerkinmethod+ penaltyapproachto removep
Time:ImplicitEuler& trapezoidal rule

Newton-Raphson&Quasi-Newtonto solve the nonlinearalgebraicEqns.
ExplicitEuler& Adamsformula as initialguesses

Variabletimesteptrapezoidalrule
O.15 O.15

I
-0.175 _ -0.05

-0.05 0.06 0.17 -0.05 0.06

hma x = 0.15 hma x = 0.05

Implicit Euler: h=0.005- limit cycle
h=0.01 - steady state (stabilizing unstable SS)

Trapezoidal: h=0.75 - limit cycle
h=0.8 - quasi periodic (secondary bifurcation)
h>0.1 - chaotic behavior
variable time step - different spurious behavior

(Poliashenko& Aidun,1995)

0.17

Figure 6.1. Two different predictor-corrector implicit methods exhibit distinct spurious bi-

furcations. Phase portraits using a variable time step predictor-corrector implicit method

(Trapezoidal rule as corrector and third-order Adams-Bashforth as predictor). (Left figure:

hma= = 0.15. Right figure." hma= = 0.05).
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and then returning to chaotic behavior. With fully developed chaotic behavior

and the solution being non-smooth, more and more singular eruptions occur.

This makes it difficult for the Newton-Raphson procedure to converge. At some

point around h = 1.5, the Newton-Raphson method fails to converge, implying

that there is a nonlinear instability of the chosen time integrator at this time

step.

Similar behavior of the numerical solution is observed if the quasi-Newton

procedure is applied instead of the standard Newton-Raphson method in solving

the underlying nonlinear algebraic system. However, in this case quasiperiodic
solutions tend to become irregular with smaller time steps and the transition to
chaos occurs earlier.

In Poliashenko & Aidun (1995) the variable time step control version of the

Adams-Bashforth/Trapezoidal predictor-corrector scheme with truncation error

tolerance of 0.005 and maximum time step of 0.15 for variable time step control

and the quasi-Newton nonlinear solver are used. They found that after Re >

6200, a weak modulation of the oscillation envelope occurs and the solution

becomes quasiperiodic with the indication of a secondary Hopf bifurcation.

As Re approaches 6500, they observed a strong resonance between the two

independent frequencies which transformed the solution from quasiperiodic to

strictly periodic. This phenomenon is known in dynamical systems as "phase-

lock" on the toms. This resulted in the birth of limit cycles. This limit cycle is
observed in a fairly wide range of Re up to 6700. At Re = 6700, the numerical

solution exhibits more complex bifurcations and transitions to weakly turbulent,
or chaotic motion.

As we decrease hmaz < 0.12, the limit cycle shown in Fig. 6.1 is replaced

by a stable 2-D torus which remains qualitatively unchanged as h is further

decreased and appears to be close to the "true" solution of the ODEs. The

latter example demonstrates that a variable time step integrator with local error
control, although more reliable, does not guarantee no spurious numerics.

6.3 Chaotic Transients Near the Onset of Turbulence in

Direct Numerical Simulations of Channel Flow (Keefe

1988, Yee & Sweby 1997)

In addition to the inherent chaotic and chaotic transient behavior in some

physical systems, numerics can independently introduce and suppress chaos as

well as chaotic transients. Loosely speaking, a chaotic transient behaves like

a chaotic solution (Grebogi et al. 1983). A chaotic transient can occur in a

continuum or a discrete dynamical system. One of the major characteristics

of a numerically induced chaotic transient is that if one does not integrate the

discretized equations long enough, the numerical solution has all the character-
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istics of a chaotic solution. The required number of integration steps might be

far beyond those found in standard CFD simulation practice before the numer-

ical solution can get out of the chaotic transient mode. Furthermore, standard

numerical methods, depending on the initial data, usually experience drastic

reductions in step size and convergence rate near a bifurcation point of the

continuum in addition to the bifurcation points due solely to the discretized

parameters. See Yee & Sweby (1992, 1995, 1996, 1997) for a discussion.

Consequently, a possible numerically induced chaotic transient is especially
worrisome in direct numerical simulations of the transition from laminar to tur-

bulent flows. Except for special situations, it is extremely difficult to bracket

closely the physical transition point by mere DNS of the Navier-Stokes equa-

tions. Even away from the transition point, this type of numerical simulation is

already very CPU intensive and the convergence rate is usually rather slow. Due

to limited computer resources, the numerical simulation can result in chaotic

transients indistinguishable from sustained turbulence, yielding a spurious pic-

ture of the flow for a given Reynolds number. Consequently, it casts some doubt
on the reliability of numerically predicted transition points and chaotic flows.
It also influences the true connection between chaos and turbulence. See also

Moore et al. (1990).

Assuming a known physical bifurcation or transition point, Fig. 6.2 illus-

trates the schematic of four possible spurious bifurcations due to constant time

steps and constant grid spacings. This section and the next (Section 6.4) illus-

trate the occurrence of these scenarios. Section 6.4 discusses the stability of the

steady state (as a function of the Reynolds number) of a 2-D backward facing

step problem using direct simulations. The present section is the computation
by Laurence Keefe performed in the late 1980s. In 1996 we made use of the

knowledge from continuum and discrete dynamical systems theory to interpret
his result. We identified some of the aforementioned numerical uncertainties

in his computations. The result is reported in Yee & Sweby 1997.

The physical problem that Keefe considered is depicted in Fig. 6.3, where

a flow is confined between planes at y = +1 and is driven in the z-direction

by a mean pressure gradient dp/dz. The flow is characterized by a Reynolds

number Re = U_L/u, where U_ is the mean centerline velocity, L is the

channel half-height, and u is the kinematic viscosity. Within the channel the

flow satisfies the incompressible Navier-Stokes equations and no-slip boundary

conditions are applied at the walls. In the particular calculations shown here

these equations have been manipulated into velocity-vorticity form, where one

integrates equations for the wall-normal velocity v and normal vorticity r/,

and recovers the other two velocity components from the incompressibility

condition and the definition of r/.
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Schematic of Possible Spurious Bifurcation
(Assume a certain physical transition; same/C & BC)

1. Dlffer_t temporal dlscreL (same spatial dlscreL)

/

,Re

2. Dlffe_t dt _ spatial & temporal dlscreL)
(_x,,attr)

Physical bif.

3. _ dx _ spatial & temporal dltcreL)

Physical bif.

_z _s (Ir_on pt]

dxt //

4. _ spatial discreL (,same temporal discreL)

Physical bif.

sdel _/ez sde_ /

Figure 6.2. Schematic of possible spurious bifurcation for constant time steps and grid spac-

ings. (1) Different temporal discretizations ode1, ode2, ode3 and ode4 (same spatial discretiza-

tion and the same constant dt and dx). (2) Different constant time steps dr1, dt2, dr3 and

dt4 (same temporal and spatial discretizations, and the same constant dx). (3) Different con-

stant grid spacings dxx, dx2, dx3 and dx4 (same spatial and temporal discretizations, and the

same constant dr). (4) Different spatial discretizations sdel, sde2 and sde3 (same temporal

discretization and the same constant dr).
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where

A2v = hv + 1A4v (6.12)Re

0 1 2
-_ rI = h g + -_eeA 7], (6.13)

Ov
f + --z- = 0, (6.14)

oy

Ou Ow Ou Ow

f = -_z + 0--;' _- Oz Oz (6.15)

h v = Oy --_x + -_z / + -_z2 + -_z2 H 2, (6.16)

OH1 OH3
hg- Oz Ox (6.17)

Here the Hi contain the nonlinear terms in the primitive form of the Navier-

Stokes equations and the mean pressure gradient.

The velocity increases extremely rapidly normal to the wail, and turbulent

channel flows are essentially homogeneous in planes parallel to the wall. The

first requires a concentration of grid points near the wall, and the second suggests

use of a doubly periodic domain in planes parallel to the wall. A spectral

representation of the velocity field (u, v, w)

ff = __, _ _ Almn(t)Tl(y)e imaz+in_z, (6.18)
l m n

where the T1 (y) are Chebyshev polynomials used for the spatial discretization.

The numerical problem then becomes dependent on a and/3 in addition to
Re. For the time discretization, mixed explicit-implicit methods are used.

The nonlinear terms in the equations are advanced using second-order Adams-

Bashforth or a low storage, third-order Runge-Kutta scheme (Spalart et al.

1991), while the viscous terms are advanced by Crank-Nicholson.

One of the central problems in studies of wall bounded shear flows is the

determination of when a steady laminar flow becomes unstable and transitions

to turbulence. In dynamical systems terms, the Navier-Stokes equations always

have a fixed point solution for low enough Reynolds numbers, but for each flow

geometry the Reynolds number at which this fixed point bifurcates needs to be

determined. In channel flow the fixed point solution (a parabolic velocity profile
across the channel, u(y) = (1 - y2)) becomes linearly unstable at Re = 5,772

(Orszag 1971). However, since turbulence appears in experiments at much
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lowerReynoldsnumbers,it wasconjecturedthatthisbifurcationmustbesub-
critical. Subsequentnumericalsolutionof thenonlinearstabilityequations
(Herbert1976,Ehrenstein& Koch1991)demonstratedthistobetrue,show-
ingthatlimit cyclesolutionswithamplitudeebranchbackto lowerReynolds
numbersbeforesubsequentlypassingthroughaturningpointandcurvingback
towardhigherReynoldsnumbers.Thusfor Reynoldsnumbersjustabovethe
turningpointtheflowequationshaveat leastfoursolutions:thefixedpoint;
twounstablelimit cycles;andachaoticsolution(experimentallyobservedtur-
bulence).Determiningthelocationof theturningpointin (c_,fl, c, Re) space

is known as the minimum-critical-Reynolds-number problem, and its solution

is by no means complete.

One way to investigate the turning point problem is to perform DNS of
channel flow for conditions believed to be near this critical condition. Beginning

with a known turbulent initial condition from higher Reynolds number, one

integrates in time at the target Reynolds number to determine whether the flow
decays back to the fixed point or sustains itself as turbulence. Although this may

not be the most efficient way to bracket the turning point, it has the advantage

that the peculiar dynamics of the flow near the turning point, whether in decay

or sustained turbulence, are observable. This yields information about the path

along which flows become turbulent at these low Reynolds numbers.

Unfortunately the flow dynamics are very peculiar near the turning point, and

extremely long chaotic transients are observed in the computations that make a
fine determination of that point all but impossible by this method. This can be

seen in Fig. 6.3, where a time history of the turbulent energy in a channel flow

(energy above that in the laminar flow) is plotted for a Reynolds number of 2,191.
To understand the time scale of the phenomenon some experimental facts need

to be recalled. In typical experimental investigations of channel flow, the infinite
transverse and streamwise extent of the ideal flow are approximated by studying

flow in high aspect ratio (10-40) rectangular ducts that typically are 50-100 duct

heights long. If times are non-dimensionalized by the centerline mean velocity

U_ and the duct half height L, then statistics on turbulence are gathered by

averaging hot-wire data over intervals AtU_/L _ 200. In the simulations and

figure the time scale is based on the friction velocity uT and L, where typically

15-20 ur _ Uoo. Thus averaging over intervals Atur/L _ 10 should and does

yield stable flow statistics that compare well with experiments. The near-wall

velocity profile, cross- channel turbulence intensities, and Reynolds and shear

stress distribution for the Atu_/L _ 10 interval near the end of the transient,

delineated by the arrows in Fig. 6.3, indicate the good comparison. In each

case they correspond well to available experimental data. Yet look at the time

scale of the transient; it spans Atu_/L ,,_ 300, thirty times longer than the time

needed to obtain stable statistics that would convince most experimentalists
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Chaotic Transient Near the Onset of Turbulence

(Keefe 1996)

Re= 2191,32 X 33 X 32 grid, mixed explicit& implicitspectral method I
163,840steps, transientcalculation lengthof 409.6,40 hrs on Cray XMPI

Geometry of PoiseuilleFlow
Aspect Ratioof Duct: -3

Re=UooL/V
Uoo- meancenterlinevelocity
L - channelhalf height
v - kinematicviscosity

Time History of the TurbulentEnergy

/

/

Keefe et al. (1992):

Io

Tu_

El

400 500 IO0 ?O0
Time

Performedthe "dimension & Lyapunov exponent" study
at midpointof later computation(Re= 3200,429,680steps)

Figure 6.3. 3-D channel flow computation by Keefe, 1988.
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that they are viewing a fully developed turbulent channel flow. This is further

complicated by the wide variation of the transient length, depending upon both

the grid resolution (number of modes in the spectral representation) and the

linearly stable time step of the integration. In fact, for fixed (o_,/3, Re) it is

possible to obtain sustained turbulence for one time step, but see it rapidly

decay to laminar flow for another, lower value of the step.

Extended chaotic transients near bifurcation points are not an unknown phe-

nomenon; the "meta-chaos" of the Lorenz system is but one of many known

examples. However, the practicalities of numerical computation in fluid dynam-

ics usually interfere with one's ability to discern whether transient, or sustained

turbulence, is being calculated. The computations required to obtain the tran-

sient plot in Fig. 6.3 needed 40 hours of single processor time on a Cray XMP,

some ten years ago. Such a small amount of expended time was only possible

because the spatial resolution of the calculation was relatively coarse (32 x 33

x 32), in keeping with the large scales of the phenomena expected at these flow
conditions. Higher resolution calculations (192 x 129 x 160) (Kim et al. 1987)

at greater Reynolds numbers typically have taken hundreds of hours (,--, 250)
to barely obtain the Atu_-/L = 10 averaging interval that is so inadequate for

detecting transients. Because such calculations are so time consuming, one typ-

ically chooses an integration time step that is a substantial fraction of the linear

stability limit of the algorithm, so as to maximize the calculated "flow time" for

expended CPU time. However, it is clear from these transient results that this

practice has some dangers when close to critical points of the underlying con-

tinuous dynamical system. Thus it appears that just as pseudo-time integration

to obtain steady solutions can result in spurious results, genuine time integra-
tion can result in chaotic transients indistinguishable from sustained turbulence,

also yielding a spurious picture of the flow for a given Reynolds number.

6.4 Temporal & Spatial Refinement Studies of 2-D

Incompressible Flow over a Backward-Facing Step

The 2-D incompressible flow over a backward-facing step has been addressed

by many authors using a wide variety of numerical methods. Figure 6.4 shows
the flow geometry. Fluid with constant density p and viscosity # enters the up-

stream channel of height h with a prescribed velocity profile (usually parabolic).

After traveling a distance l, the fluid passes over a backward-facing step of height

s and enters the downstream channel of height H - h + s. After traveling a

distance L downstream of the step, the fluid exits the region of interest. For

Reynolds numbers considered here, the flow separates at the corner and forms

a recirculating region behind the step. Additional recirculating regions form on
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BackwardFacingStep
(2-D IncompressibleFlow Simulations)

,..... , %:iiii!ii;i_E_#ySii:i!_;,:, _.
_l - .,., .

,",_ !i!jii:@@ii!i;£_s-.:,,_._...... _ U ---_:
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Early 90's Controversy: Transition point Reynolds #

• Reportsof sustained unsteadyflow for Reynolds#
inthe range of (250, 2500)

• Formulations
vortex method, unsteadyEqns. in streamfunctionform,
unsteadyEqns. & theassociatedlinear-stabilityproblem,
unsteadyEqns. in primitivevariableform

• NumericalMethods
All of theexistingschemes in the literature

Gresho et al. (1993): Provided an answer to the above controversy
(the steady solution at Re=800 is stable)

• Kaiktsis et al. (1991) - transition to turbulent flow has occurred at Re-800

o Torczynski (1993) - the result of Kaiktsis et al. (1991) is an artifact of
inadequate spatial resolution

• Torczynski's conclusion was confirmed by a subsequent study of
Kaiktsis et al. (1996) & Fortin et al. (1996)

Figure 6.4. Schematic of the backward facing step problem and background.
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the upper and subsequently the lower walls of the downstream channel as the

Reynolds number is increased.

Results of sustained unsteady flow from various numerical simulations have

been reported for Reynolds numbers (Re) ranging from 250 up to 2500. The

formulations included the vortex method, unsteady equations in stream func-

tion form, steady equations and the associated linear-stability problem, and the

unsteady equations in primitive variable form. The numerical methods used

cover almost all of the existing schemes in the literature. The majority of the
numerical results are summarized in Gresho et al. (1993). The work of Gresho

et al. was an answer to a controversy concerning the stability of the stationary

solution at Re = 800. It was concluded by Kaiktsis et al. (1991) that transi-
tion to turbulent flow has occurred at Re - 800. Kaiktsis et al. examined the

long-time temporal behavior of the flow and found that the flow is steady at
Re = 500, time-periodic at Re = 700, and chaotic at Re = 800. Gresho et al.

did a detailed grid refinement study using four different numerical methods and

concluded that the backward-facing step at Re -- 800 is a stable steady flow.

In addition to the study of Gresho et al., an extensive grid refinement study of

this flow using a spectral element method was conducted in Torczynski (1993).

The simulated geometry and the numerical method corresponds to that of Kaik-

tsis et al. (1991). Flow was examined at Reynolds numbers of 500 and 800.

His systematic grid refinement study was performed by varying both the ele-

ment size and the order of the polynomial representation within the elements.

For both Reynolds number values with the transient computations stopped at

t -- 800, it was observed that low-resolution grid cases exhibit chaotic-like tem-
poral behavior whereas high-resolution grid cases evolve toward asymptotically

steady flow by a monotonic decay of the transient. The resolution required to
obtain asymptotically steady behavior is seen to increase with Reynolds num-
ber. These results suggest that the reported transition to sustained chaotic flow

(Kaiktsis et al., 1991) at Reynolds numbers around 700 is an artifact of inad-

equate spatial resolution. Torczynski's conclusion was further confirmed by
a subsequent study of Kaiktsis et al. (1996) and Fortin et al. (1996). Fortin

et al. employed tools from dynamical systems theory to search for the Hopf

bifurcation point (transition point). They showed that the flow remains steady

at least up to Re = 1600.

Grid Refinement Study of Torezynski (1993): In Torczynski (1993), the

Re = p_2h/# is based on upstream conditions. The variable _ is the spatial

average of the horizontal velocity u over h. The geometry is specified to match

that of Kaiktsis et al. (1991). The upstream channel height h and step height s

have values of h = 1 and s = 0.94231, yielding a downstream channel height

of H = 1.94231. The corner of the step is at (x, y) = (1, 0). The channel
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extends a distance L = 1 upstream from the step and a distance L = 34

downstream from the step to preclude undue influence of the finite channel

length on the flow at Re = 800. The following conditions are applied on

the boundaries of the computational domain" u = v = 0 on the upper and
lower channel walls, -p + #Ou/On = 0 and Ov/On = 0 on the outflow

boundary, and u = [tanh(t/16)]uB(y) + [1 - tanh(t/16)]up(y) and v = 0 on
the inflow boundary and the step surface. Here, uB(y) = max[O, 3y(1 -- y)]

is the correct boundary condition for flow over a backward-facing step and

up(y) = 3(1 - y)(s + y)/(1 + s) 3 is the Poiseuille flow observed infinitely

far downstream whenever steady flow is asymptotically obtained. The initial

velocity field is set equal to u = up(y) and v = 0 throughout the domain. Here

v is the vertical velocity and p is the pressure. Thus, the above combination of

boundary and initial conditions initially allows flow through the step surface so

that the simulations can be initialized using an exact divergence-free solution of

the Navier-Stokes equations. Furthermore, since the inflow boundary condition

is varied smoothly in time from Poiseuille flow to flow over a backward-facing

step, the flow experiences an order-unity transient that is probably strong enough
to excite sustained unsteady behavior, if that is the appropriate asymptotic state
for the numerical solution.

The simulations were performed using the commercial code NEKTON v2.8,

which employs a time-accurate spectral-element method with the Uzawa for-
mulation (NEKTON, 1991). Let D be the dimensionality. Each element has

N ° velocity nodes located at Gauss-Lobatto Legendre collocation points, some

of which are on the element boundaries, and (N - 2) D pressure nodes located

at Gauss Legendre collocation points, all of which are internal. Within each

element, the velocity components and the pressure are represented by sums

of D-dimensional products of Lagrangian-interpolant polynomials based on
nodal values. This representation results in continuous velocity components

but discontinuous pressure at element boundaries. Henceforth, the quantity N

is referred to as the element order, even though the order of the polynomials

used to represent the velocity is N - 1. NEKTON employs mixed explicit and

implicit temporal discretizations. To avoid solving a nonlinear nonsymmetric

system of equations at each time step, the convective term is advanced explic-

itly in time using a third-order Adams-Bashforth scheme. All other terms are

treated implicitly (implicit Euler for the pressure and for the viscous terms).

Three spectral-element grids of differing resolution, denoted L (low), M

(medium), and H (high), are employed. Figure 6.6 shows the computational

domain and the grid distribution of the three spectral element grids in which the

distribution of nodes within each spectral element is not shown. The L grid

with N = 9 is identical to the grid ofKaiktsis et al. (1991). Four general classes
of behavior are observed for the numerical solutions. First, "steady monotonic"
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denotes evolution of the numerical solution toward an asymptotically steady

state. Second, "steady oscillatory" denotes evolution toward an asymptotically

steady state with a decaying oscillation superimposed on the monotonic decay.

Third, "unsteady chaotic" denotes irregular transient behavior of the numerical

solution that shows no indication of evolving toward steady behavior. Fourth,

"diverge" denotes a numerical solution terminated by a floating-point exception.

In Fig. 6.6, the first character denotes the grid resolution L, M or H, the

first digit indicates the Reynolds number 500 or 800 and the last two digits

indicate the order of the spectral element being used. For example, L807
means Re = 800 using the L grid with N = 7.

The extensive grid refinement study of Torczynski resulted in grid-independent

steady-state numerical solutions for both Re = 500 and Re = 800. As the

grid resolution is reduced below the level required to obtain grid independent

solutions, chaotic-like temporal behavior occurred. The degree of grid reso-

lution required to obtain a grid-independent solution was observed to increase

as the Reynolds number is increased. Figure 6.5 shows the streamlines for

for H809 (steady solution) and L811 (spurious time-periodic solution) and the

corresponding grids with the distribution of the nodes of the spectral elements
shown.

Temporal Refinement Studies Using Knowledge from Dynamical Systems

Theory: All of Torczynski's numerical solutions integrate to t - 800. With the

knowledge of possible nonlinear behavior of numerical schemes such as long

time transients before a steady state is reached, numerically induced chaotic

transients, numerically induced or suppressed chaos, existence of spurious

steady states and asymptotes, and the intimate relationship among initial data,

time step and grid spacing observed in discrete dynamical systems theory, Yee
et al. (1997) examined the Torczynski cases in more detail.

In the Yee et al. (1997) study, in addition to grid refinement, temporal refine-

ments are made on all of the under-resolved grid cases to determine if these cases

sustain the same temporal behavior at a much later time or evolve into a different

type of spurious behavior. At t = 800, cases L506, L507, L508, L509, L811,

M807 and M808 either exhibit "unsteady chaotic" or "steady oscillatory" be-

havior. We integrate these cases to t -- 2000 to determine if a change in

solution behavior occurs. From the phenomena observed in Keefe's 3-D chan-

nel flow computation and others, t = 2000 might not be long enough for a

long time transient or long chaotic transient to die out. There is also the po-

tential of evolving into a different type of spurious or divergent behavior at a

much later time. However, for this study it appears that t = 2000 is suffi-

cient. For Re - 500, we also recomputed some of these cases with a sequence

of At that bracketed the benchmark study of Torczynski. The At values are
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r ackward Facing Step Simulations "_
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0.02, 0.05, 0.10, 0.125, 0.2, 0.3, 0.4, and 0.5 for Re = 500. The CFL number

for all of these cases is above 1 for At > 0.10. The reason for the investigation
of At = 0.3, 0.4 and 0.5 is to find out, after the transients have died out, if the

solution converges to the correct steady state for At that are a few times larger
than 0.10.

ForRe = 800, we integrate L811 and M808 with At = 0.10 and M807 with

At = 0.02, 0.05 and 0.10 to t = 2000. Aside from integrating to t = 2000,
five different initial data were examined for cases M807, M809 and M811 for

At = 0.10 to determine the influence of the initial data and the grid resolution
on the final numerical solution. The five initial data are:

(a) Uniform: u, v = 0

(b) Shear layer: u = uB(y) = max[O, 3y(1 -- y)], v = 0
(e) Solution from solving the steady Stokes equation (with no convection

terms)

(d) Torczynski (1993): u = up(y) = 3(1 - y)(s + y)/(1 + s)3,v = 0

(e) Channel flow both upstream & downstream of step: Same as (d) except

the boundary conditions

The boundary conditions for (a), (b), (c) and (e) were parabolic inflow and no-
slip at walls, whereas the boundary conditions for (d) were those of Torczynski

(1993): u = [tanh(t/16)]uB(y) + [1 - tanh(t/16)]up(y) and v = 0. The
CPU time required to run the above cases ranged from less than a day to several

days on a Sparc Center 2000 using one processor.

The chaotic-like behavior evolves into a time-periodic solution beyond t =
800 for L506 and L507, whereas the chaotic-like behavior evolves into a time-

periodic solution beyond t = 800 for L811 and a divergent solution for M807.

The "steady oscillatory" case L508 slowly evolves to the correct steady state
with an amplitude of oscillation of 10-5 . The oscillation is not detectable

within the plotting accuracy. The "steady oscillatory" time evolution of M808

is similar to that of L508. The numerical solutions with "steady oscillatory" and

"steady monotonic" behavior at early stages of the time integration are almost

identical at later stages of the time integration. They all converge to the correct

steady state. The initial data study at Re = 800 with At -- 0.10 is summarized

in Table 5.5 of Yee et al. (1997). It illustrates the intimate relationship between

initial data and grid resolution.

Figure 6.6 shows the vertical velocity time histories at (x, y) = (30, 0)

advanced to a time of t = 2000 for M807 with At = 0.02, 0.05 and 0.10,

and L811 for At -- 0.10. Case M807 diverges at t = 1909.2 for At = 0.02,
att = 972.4 for At = 0.05, and att = 827.77 for At = 0.10. The time

histories for these three time steps appear to show chaotic-like behavior if one

stops the computations at t = 800. The bottom plot of Fig. 6.6 shows the



• v,

Building Blocks for Reliable Simulations 29

Vertical Velocity Time Histories at (30,01Re=800, M & L Grids

0,15

0.05

-0.05

-0.15

0.15

0.05

-0.05

-0.15

0.15

0.05

-0.05

-0.15
0

0.15

0.05 1> -0.05

-0.15
0

0 500 1000 1500 2000

M807
dt=O.02

(diverges at t=1909.2)

M807
dt=O.05

(diverges at t=972.4)

0 500 1000 1500 2000

dt=0.10
(diverges at t=827. 77)

• . . .... i , .. . I • , .

500 1000 1500 2000

.... ..... ' ......... t_J L81A&...........,,,,=,,,,mmm_Wl__Ullll_itlllltlllil_WW_lltt _, _n+l

'V''_..........."'"'mmmN_lnl I_ =,=v.v.
I]]IIDNI_@_BIIIIIIIIIIINIIII__InlHIIH(spurioustime.periodic)

• . , , , I , , = , i . , , , I , • , , I

500 1000 1500 2000
t

Figure 6.6. Vertical velocity time histories for the M807"with time steps 0.02, 0.05, 0.10, and

L811 with time step O.01for t = 2000.
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vertical velocity time histories advanced to a time of t = 2000 for L811 with

At = 0.10. It shows the definite time-periodic spurious solution pattern. On

the other hand, the time history for this case appears to show an aperiodic-like

pattern if one stops the computation at t -- 800. Note that the L809 grid case

was used by Kaiktsis et al. (1991) and they concluded that "2-D transition" has

already occurred at Re = 800.

In summary, without the temporal refinement study (longer time integration),
the L506, L507, L811 and M807 cases can be mistaken to be chaotic-like (or

aperiodic-like) flow. Although the time history up to t = 800 appears chaotic-
like, one cannot conclude it is chaotic without longer transient computations.

One can conclude that with transient computations that are 2.5 times longer

than Torczynski's original computations, what appeared to be aperiodic-like or

chaotic-like behavior at earlier times evolved toward either a time-periodic or

divergent solution at later times. These temporal behaviors appear to be long

time aperiodic-like transients or numerically induced chaotic-like transients.
For Re -- 800, five different initial data were examined to determine if the

flow exhibits strong dependence on initial data and grid resolution. Results
showed that the numerical solutions are sensitive to these five initial data. Note

that the results presented pertain to the characteristic of the studied scheme
and the direct simulations. However, if one is certain that Re = 800 is a stable

steady flow, a non-time-accurate method such as time-marching to obtaining the

steady-state numerical solution would be a more efficient numerical procedure.

Spurious Bifurcation by Different Time Integrators (Henderson & Yee 1998,

unpublished): This is a joint work with Ronald Henderson in 1998. The un-

published work was presented at the 10th International Conference in Finite

Element Methods, January 5-8, 1998, Tucson, Arizona, and also has been pre-
sented at various invited lectures during the last four years. Our joint work

illustrates the situation where solving the nonlinear terms of the Navier-Stokes

equations by two different explicit time integrators (same implicit time integra-

tor for the linear terms) results in spurious bifurcation. This spurious bifurcation

is shown in Fig. 6.7 as a function of the Reynolds number. These computations

use the implicit Euler time integrator for the linear terms. Also the same spatial

discretization L809 is used with a fixed time step of t = 0.10. The two explicit

time integrators are the third-order Adams-Bashforth (AB 3) and a second-order

explicit stiffly stable method (SS2) (Henderson 1999). The AB3 method ex-

periences a spurious bifurcation near Re = 720, whereas the SS2 method

experiences a spurious bifurcation at a larger Reynolds number near Re -- 800.

The method and the scaling for this figure can be found in Henderson (1999).

Finding the exact location of these spurious bifurcation points requires more

complicated computation which is not performed here. In addition, the exact

representation of this bifurcation plot is rather complicated to explain, and is not
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Backward Facing Step (JointworkwithHenderson&Torczynski)
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a time step of O. 10.
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important for the current discussion. They are not the main illustration for this

study. When an adaptive version of the spectral element method (Henderson,

1999) is used, the problem remains laminar up to Re = 1800. Future work

which is indicated on Fig. 6.7 is planned.

Minimization of Spurious Bifurcation by a Suitable Filter (Fischer 2001, un-

published): Recently, Fischer (2001) computed the same L811 spectral element

grid using a time integrator based on the operator integration-factor splitting

(OIFS) developed by Maday, Patera and RCnquist (1990). This scheme decou-

pies the convective step from the Stokes update, thereby allowing CFL numbers

in excess of unity. At the end of each step, Fischer applies a filter to the velocity

that effectively scales the Nth-order Legendre modes within each element by

(1 - c_), where, typically, 0.05 _< o_ _<0.30 (Fischer & Mullen 2001). Because
the filter is applied on each step, its strength is a function of A_ as well as c_.

The spurious behavior observed by Kaiktsis et al. (1991) is cured by the filter
and a stable steady-state numerical solution is obtained without further grid

refinement. Figure 6.8 illustrates the velocity time histories at (30, 0) by the

filtered and un-filtered spectral element methods with At = 0.10.

In summary, Sections 6.3 and 6.4 illustrate all of the possible scenarios of

spurious bifurcations indicated on the schematic diagram of Fig. 6.2. The last

scenario, discussed briefly at the beginning of Section 6.4, is quite common and
is not shown here. See Gresho et al. (1993) and references cited therein for

some examples.

VI. Concluding Remarks

Some building blocks to ensure a higher level of confidence in PAR of nu-
merical simulations have been discussed. The discussion concentrates only on

how well numerical schemes can mimic the solution behavior of the underlying

PDEs. The possible discrepancy between the chosen model and the real physics

and/or experimental data is set aside. These building blocks are based largely

on the author's view, background and integrated experience in computational

physics, numerical analysis and the dynamics of numerics. They also represent
the end result of the various studies with the author's collaborators indicated

in the acknowledgment Section. Among many other important building blocks
for the PAR of numerical simulations, the author believes the following five

building blocks are essential. The first building block is to analyze as much as

possible the dynamical behavior of the governing equation. For stability and

well-posedness considerations, whenever it is possible, it is also necessary to

condition (not pre-condition) the governing PDEs before the application of the

appropriate scheme (Yee & Sj6green 2001a,b). The second building block is to

understand the nonlinear behavior, limits and barriers, and to isolate spurious
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behavior of existing numerical schemes. A third building block is to include

nonlinear dynamics and bifurcation theories as an integral part of the numerical

process whenever it is possible. A fourth building block is to construct ap-

propriate adaptive spatial and temporal discretizations that are suitable for the

underlying governing equation. The last building block is to construct appro-

priate adaptive numerical dissipation/filter controls for long time integrations,

complex high speed turbulent and combustion simulations (Sj6green & Yee

2001, Yee & Sj6green 2001).

The need for the study of dynamics of numerics is prompted by the fact

that the type of problem studied using CFD has changed dramatically over

the past two decades. CFD is also undergoing an important transition, and it

is increasingly used in nontraditional areas. But even within its field, many

algorithms widely used in practical CFD applications were originally designed

for much simpler problems, such as perfect or ideal gas flows. As can be
seen in the literature, a straightforward application of these numerical methods

to high speed flows, nonequilibrium flows, advanced turbulence modeling or

combustion related problems can lead to wrong results, slow convergence, or

even nonconvergent solutions. The need for new algorithms and/or modification

and improvement to existing numerical methods in order to deal with emerging

disciplines is evident. We believe the nonlinear dynamical approach for CFD

can contribute to the success of this goal.

We have revealed some of the causes of spurious phenomena due to the nu-

merics in an attempt to improve the understanding of the effects of numerical

uncertainties in CFD. We have shown that guidelines developed using lineariza-

tion methods are not always valid for nonlinear problems. We have gained an

improved understanding of long time behavior of nonlinear problems and non-
linear stability, convergence, and reliability of time-marching approaches. We
have learned that numerics can introduce and suppress chaos and can also in-

troduce chaotic transients. The danger of relying on DNS to bracket closely
the the onset of turbulence and chaos is evident.

We illustrated with practical CFD examples that exhibit properties and quali-

tative behavior similar to those of elementary examples in which the full dynam-

ical behavior of the numerics can be analyzed. The observed spurious behavior

related to under-resolved grid cases is particularly relevant to DNS and large

Eddy simulation (LES). Spatial resolutions in DNS and LES are largely dictated

by the computer power. These studies serve to point out the various possible

dangers of misinterpreting numerical simulations of realistic complex flows that
are constrained by available computing power.

As can be seen, recent advances in dynamics of numerics show the advan-

tage of adaptive step size error control for long time integration of nonlinear
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ODEs. Although much research is needed to construct suitable yet practical

similar adaptive methods for PDEs, these early developments lead our way to
future theories. There remains the challenge of constructing practical spatial

and temporal adaptive methods for time-accurate computations, and construct-

ing adaptive step size control methods that are suitable yet practical for time

marching to the steady state for aerospace CFD applications. Another even

more challenging area is the quest for an adaptive numerical scheme that leads

to guaranteed and rapid convergence to the correct steady-state numerical so-
lutions.
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